RS PRO PT100 RTD Sensor, 6mm Dia, 250mm Long, 4 Wire, Probe, Class B +250°C Max
Technical Document
Specifications
Brand
RS ProSensor Type
PT100
Probe Length
250mm
Probe Diameter
6mm
Minimum Temperature Sensed
-50°C
Maximum Temperature Sensed
+250°C
Termination Type
Bare Wire Tail
Cable Length
1m
Probe Material
Stainless Steel
Process Connection
Probe
Number Of Wires
4
Accuracy
Class B
Country of Origin
United Kingdom
Product details
RS Pro General Purpose 4 Wire Pt100 PRT Probe with Screened Teflon Lead
From RS Pro a high-quality and reliable Pt100 PRT (Platinum Resistance Thermometer) or RTD (Resistance Temperature Detector) sensing probe. This RTD probe has a robust construction with the sensing element encased in a rigid 316 stainless steel sheath. The leads have a durable and flexible Teflon insulation and are screened for protection against electromagnetic interference. This platinum resistance thermometer provides accurate and reliable temperature measurement for a wide range of applications.
What is an RTD?
An RTD is a type of temperature sensor based on the correlation between metals and temperature. As the temperature of a metal increases so does its resistance to the flow of electricity. This resistance can be measured and converted to a temperature reading. In a Pt100 RTD Pt stands for platinum (platinum wire or film) and 100 means that the temperature sensor has a resistance of 100 Ohms at 0°C. Platinum is the most reliable metal due to its linear resistance to temperature relationship over a large temperature range.
What is a Pt100 Probe?
A Pt100 probe is the most rugged form of RTD. The Pt100 temperature sensor element is mounted inside a metal sheath or probe. This protects it from being damaged by the surrounding environment when it is inserted into the process to be measured. The other end of the probe is terminated by an insulated lead comprising of 4 wire tails which are connected to the temperature measuring equipment.
Features and Benefits
High stability sensing element with a precision output
IEC 60751 Class B accuracy/tolerance
Temperature measurement range of -50 to +250°C
4 lead wires for accurate readings
Leads connect to any 2 3 or 4 wire PT100 instrument
Rigid 316 corrosion resistant stainless steel sheath for protection of sensing element
Flexible Teflon insulation provides thermal and electrical insulation, impact strength and protects against moisture, corrosion and abrasive chemicals even in extreme temperatures
Screened cable for protection against electromagnetic interference
Applications
These Pt100 PRT sensor probes with their robust design are ideal for use in many general purpose industrial applications including the following:
Air conditioning and refrigeration
Chemical industry
Plastics processing
Stoves and grills
Air, gas and liquid temperature measurement
Exhaust gas temperature measurement
Food processing
Laboratories
Frequently Asked Questions
How Does a PRT Temperature Sensor Work?
The PRT temperature sensor works by placing the sensor element (or process end) into the equipment or process that requires temperature measurement. As the temperature of the platinum resistance thermometer increases its resistance to the flow of electricity increases. For every increase per degree of temperature the electrical resistance also changes by a set ratio, this is called the temperature coefficient. For platinum, this ratio is .00385 ohm/ohm/°C which means for a Pt100 with a 100 ohm resistance the increase in resistance per degree of temperature would be 0.385 ohms. The total resistance reading can, therefore, be measured and converted into temperature.
How is the Resistance Measured?
The resistance generated by the temperature sensor is measured by passing current through one of the wires to produce a voltage. This voltage is then measured using a suitable bridge or voltmeter and the resistance calculated in ohms using Ohms Law (R=V/I). Once the resistance is known you can convert it to a temperature reading using a calibration equation or a Pt100 table. A temperature measurement device or calibrator can also be connected to the leads of the probe that will automatically convert the measured resistance into a temperature reading.
Stock information temporarily unavailable.
Please check again later.
€ 97.80
Each (ex VAT)
€ 116.38
Each (inc. VAT)
1
€ 97.80
Each (ex VAT)
€ 116.38
Each (inc. VAT)
1
Buy in bulk
quantity | Unit price |
---|---|
1 - 5 | € 97.80 |
6 - 11 | € 94.37 |
12+ | € 90.74 |
Technical Document
Specifications
Brand
RS ProSensor Type
PT100
Probe Length
250mm
Probe Diameter
6mm
Minimum Temperature Sensed
-50°C
Maximum Temperature Sensed
+250°C
Termination Type
Bare Wire Tail
Cable Length
1m
Probe Material
Stainless Steel
Process Connection
Probe
Number Of Wires
4
Accuracy
Class B
Country of Origin
United Kingdom
Product details
RS Pro General Purpose 4 Wire Pt100 PRT Probe with Screened Teflon Lead
From RS Pro a high-quality and reliable Pt100 PRT (Platinum Resistance Thermometer) or RTD (Resistance Temperature Detector) sensing probe. This RTD probe has a robust construction with the sensing element encased in a rigid 316 stainless steel sheath. The leads have a durable and flexible Teflon insulation and are screened for protection against electromagnetic interference. This platinum resistance thermometer provides accurate and reliable temperature measurement for a wide range of applications.
What is an RTD?
An RTD is a type of temperature sensor based on the correlation between metals and temperature. As the temperature of a metal increases so does its resistance to the flow of electricity. This resistance can be measured and converted to a temperature reading. In a Pt100 RTD Pt stands for platinum (platinum wire or film) and 100 means that the temperature sensor has a resistance of 100 Ohms at 0°C. Platinum is the most reliable metal due to its linear resistance to temperature relationship over a large temperature range.
What is a Pt100 Probe?
A Pt100 probe is the most rugged form of RTD. The Pt100 temperature sensor element is mounted inside a metal sheath or probe. This protects it from being damaged by the surrounding environment when it is inserted into the process to be measured. The other end of the probe is terminated by an insulated lead comprising of 4 wire tails which are connected to the temperature measuring equipment.
Features and Benefits
High stability sensing element with a precision output
IEC 60751 Class B accuracy/tolerance
Temperature measurement range of -50 to +250°C
4 lead wires for accurate readings
Leads connect to any 2 3 or 4 wire PT100 instrument
Rigid 316 corrosion resistant stainless steel sheath for protection of sensing element
Flexible Teflon insulation provides thermal and electrical insulation, impact strength and protects against moisture, corrosion and abrasive chemicals even in extreme temperatures
Screened cable for protection against electromagnetic interference
Applications
These Pt100 PRT sensor probes with their robust design are ideal for use in many general purpose industrial applications including the following:
Air conditioning and refrigeration
Chemical industry
Plastics processing
Stoves and grills
Air, gas and liquid temperature measurement
Exhaust gas temperature measurement
Food processing
Laboratories
Frequently Asked Questions
How Does a PRT Temperature Sensor Work?
The PRT temperature sensor works by placing the sensor element (or process end) into the equipment or process that requires temperature measurement. As the temperature of the platinum resistance thermometer increases its resistance to the flow of electricity increases. For every increase per degree of temperature the electrical resistance also changes by a set ratio, this is called the temperature coefficient. For platinum, this ratio is .00385 ohm/ohm/°C which means for a Pt100 with a 100 ohm resistance the increase in resistance per degree of temperature would be 0.385 ohms. The total resistance reading can, therefore, be measured and converted into temperature.
How is the Resistance Measured?
The resistance generated by the temperature sensor is measured by passing current through one of the wires to produce a voltage. This voltage is then measured using a suitable bridge or voltmeter and the resistance calculated in ohms using Ohms Law (R=V/I). Once the resistance is known you can convert it to a temperature reading using a calibration equation or a Pt100 table. A temperature measurement device or calibrator can also be connected to the leads of the probe that will automatically convert the measured resistance into a temperature reading.